If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+272x+210=0
a = 6; b = 272; c = +210;
Δ = b2-4ac
Δ = 2722-4·6·210
Δ = 68944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68944}=\sqrt{16*4309}=\sqrt{16}*\sqrt{4309}=4\sqrt{4309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(272)-4\sqrt{4309}}{2*6}=\frac{-272-4\sqrt{4309}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(272)+4\sqrt{4309}}{2*6}=\frac{-272+4\sqrt{4309}}{12} $
| 10-d=2-4d | | 5x2-2x+8=0 | | 5x2+2x+8=0 | | 6e+5=17 | | 5+6(x-2)=3x+20 | | X-(40+1.5x)=0 | | 12x+8+6x=8-14x | | 6(w+5)=-6(2w-3)+2w | | 6x-12+6x-18=30 | | -9x-6+4=4+2x-8× | | 6x+12=20+2x | | -6w2−6w+2=0 | | -3y+8=-3y+10 | | 8x+19=45 | | 5x-2=3x+21+1 | | 4y^2-10y-6=0 | | (t+2)+(t-3)=2 | | 2a^2-2a=0 | | 2x+3x=128 | | (9h+2)/3+(h+7)=-27 | | 2x-5=6-x2x | | 12+a=13 | | -2x-5=x-2x | | 16^-x-5=32 | | 10(x+3)=7(x+9)-21 | | 15x+3=13x+3 | | (-0.5-x)^2(-0.2-x)+0.2=0 | | 10k+2-7k=17 | | 1/6x1/6x1/6x1/6x1/6x1/6x1/6x1/6x1/6x=1/6 | | 1+(2-4x)-(1-x)=3x-2(x-3) | | 4(4n-4)=11n+3(n-4) | | (s+6)=15 |